Group Of Components
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, the identity component of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
''G'' refers to several closely related notions of the largest
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
subgroup of ''G'' containing the identity element. In
point set topology In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geomet ...
, the identity component of a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two str ...
''G'' is the connected component ''G''0 of ''G'' that contains the
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
of the group. The identity path component of a topological group ''G'' is the
path component In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties ...
of ''G'' that contains the identity element of the group. In
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, the identity component of an
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Man ...
''G'' over a field ''k'' is the identity component of the underlying topological space. The identity component of a
group scheme In mathematics, a group scheme is a type of object from Algebraic geometry, algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of Scheme (mathematics), schemes, and they generalize algebraic groups, in ...
''G'' over a base
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
''S'' is, roughly speaking, the group scheme ''G''0 whose
fiber Fiber or fibre (from la, fibra, links=no) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate ...
over the point ''s'' of ''S'' is the connected component ''(Gs)0'' of the fiber ''Gs'', an algebraic group.SGA 3, v. 1, Exposé VI, Définition 3.1


Properties

The identity component ''G''0 of a topological or algebraic group ''G'' is a closed
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G i ...
of ''G''. It is closed since components are always closed. It is a subgroup since multiplication and inversion in a topological or algebraic group are
continuous map In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s by definition. Moreover, for any continuous
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
''a'' of ''G'' we have :''a''(''G''0) = ''G''0. Thus, ''G''0 is a
characteristic subgroup In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism ...
of ''G'', so it is normal. The identity component ''G''0 of a topological group ''G'' need not be
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gotthard album), 1999 * ''Open'' (Cowboy Junkies album), 2001 * ''Open'' (YF ...
in ''G''. In fact, we may have ''G''0 = , in which case ''G'' is
totally disconnected In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
. However, the identity component of a
locally path-connected space In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties th ...
(for instance a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
) is always open, since it contains a
path-connected In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that ...
neighbourhood of ; and therefore is a
clopen set In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible may seem counter-intuitive, as the common meanings of and are antonyms, but their mathematical de ...
. The identity path component of a topological group may in general be smaller than the identity component (since path connectedness is a stronger condition than connectedness), but these agree if ''G'' is locally path-connected.


Component group

The
quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For examp ...
''G''/''G''0 is called the group of components or component group of ''G''. Its elements are just the connected components of ''G''. The component group ''G''/''G''0 is a
discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and on ...
if and only if ''G''0 is open. If ''G'' is an algebraic group of finite type, such as an
affine algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n wh ...
, then ''G''/''G''0 is actually a
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
. One may similarly define the path component group as the group of path components (quotient of ''G'' by the identity path component), and in general the component group is a quotient of the path component group, but if ''G'' is locally path connected these groups agree. The path component group can also be characterized as the zeroth
homotopy group In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotop ...
, \pi_0(G,e).


Examples

*The group of non-zero real numbers with multiplication (R*,•) has two components and the group of components is (,•). *Consider the
group of units In algebra, a unit of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for this ...
''U'' in the ring of
split-complex number In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
s. In the ordinary topology of the plane , ''U'' is divided into four components by the lines ''y'' = ''x'' and ''y'' = − ''x'' where ''z'' has no inverse. Then ''U''0 = . In this case the group of components of ''U'' is isomorphic to the
Klein four-group In mathematics, the Klein four-group is a Group (mathematics), group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three ...
. *The identity component of the additive group (Zp,+) of p-adic integers is the singleton set , since Zp is totally disconnected. *The
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections th ...
of a reductive algebraic group ''G'' is the components group of the normalizer group of a
maximal torus In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefore ...
of ''G''. *Consider the group scheme μ''2'' = Spec(Z 'x''(''x''2 - 1)) of second roots of unity defined over the base scheme Spec(Z). Topologically, μ''n'' consists of two copies of the curve Spec(Z) glued together at the point (that is,
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
) 2. Therefore, μ''n'' is connected as a topological space, hence as a scheme. However, μ''2'' does not equal its identity component because the fiber over every point of Spec(Z) except 2 consists of two discrete points. An algebraic group ''G'' over a topological field ''K'' admits two natural topologies, the
Zariski topology In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
and the topology inherited from ''K''. The identity component of ''G'' often changes depending on the topology. For instance, the
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
GL''n''(R) is connected as an algebraic group but has two path components as a Lie group, the matrices of positive determinant and the matrices of negative determinant. Any connected algebraic group over a non-Archimedean
local field In mathematics, a field ''K'' is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. Equivalently, a local field is a locally compact t ...
''K'' is totally disconnected in the ''K''-topology and thus has trivial identity component in that topology.


note


References

*
Lev Semenovich Pontryagin Lev Semenovich Pontryagin (russian: Лев Семёнович Понтрягин, also written Pontriagin or Pontrjagin) (3 September 1908 – 3 May 1988) was a Soviet Union, Soviet mathematician. He was born in Moscow and lost his eyesight ...
, ''Topological Groups'', 1966. * *


External links

* Revised and annotated edition of the 1970 original. {{DEFAULTSORT:Identity component Topological groups Lie groups